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Analysis of the Radiation Leakage for a
Four-Aperture Phased-Array Applicator

in Hyperthermia Therapy

JAMES R. WAIT, FELLOW, IEEE

.O.rtract — We develop a criterion for the justified neglect of the field
leaking from the regions between the horn apertures in a phased-array

applicator. The condition is (b/6)+ <<1, where fi is the skin depth of the
conductive material, b is the radius of the torso or limb, and + is the

wedge angle between the horn apertures.

1. INTRODUCTION

I N VIEW OF THE extensive use of phased-array-type

applicator: in hyperthermia, it is surprising that the
relevant electromagnetic boundary-value problems have not

been adequately solved. Admittedly, the overall problem is

vastly complicated and some idealizations and simplifica-

tions are desirable. It is important, however, to know what

might be the consequences of making some gross assump-

tion about the geometry. For example, in the case of

phased-array applicators [1]–[4] arranged around the pe-

riphery of a cylindrical torso or limb, the apertures may

have gaps between them. While we can specify the electric

field within a given aperture with some assurance, it is

certainly not obvious what the field is between the aper-

tures. Using a two-dimensional model, we outline an analy-

sis of this problem, which leads to a simple criterion for the

neglect of the “radiation leakage.” The proposed analytical

method could also be employed to quantify some of these

leakage effects, but we do not undertake this task here.

The situation is best described with reference to Fig. 1,

where the idealized geometry is shown. Choosing cylin-

drical coordinates (P, % z), we define the target (i.e.> limb,

torso, or neck) as a homogeneous circular cylinder bonded

by p = b. The conductivity, permittivity, and permeability

are O, e, and PO, respectively. The fields are to be excited

by four horn apertures with the electric field predomi-

nantly in the axial or z direction. In fact, we stipulate that

1

o<pj<a

T
Ez(b, @)= F(@) for j–a<l+l<~+a. (1)

7r-a<[+]<7r

where F(~) is a known function over the angular width of

each aperture. In fact, we restrict attention hereto even-type
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excitation such that F(O) = F( – $), but we wish to retain

the freedom to introduce asymmetry about @= T/2. As

indicated, the angular width of each aperture is 2a.

Now, in the case where a < 77/4, the electric field

E=(b, O) cannot be assumed to be zero over the interval of

@ between the, edges of the apertures (e.g., when a < @<

77/2 – a) unless, of course, we filled in these portions of the

cylindrical surface with a metallic surface. When such a

cast is not present, there is no reason why we should set

EZ( b, z) = O over the gaps betweerk the apertures. But one

possible way to cope with this problem is to say that

EZ(b, $) and the corresponding magnetic field Ho(b, +)

are related by some type of impedance. There is a good

reason to say this impedance will be substantially the same

parameter Z. for each aperture. Thus, in effect, we are

asserting that

1

~<j+l<;–a

E=(b, @) = – ZoH@(b, @) for . (2)

;+a<l+]<n–a

Turning our attention to the interior problem (i.e., p < b),

we can write immediately the form of the solution for the

axial electric field

E,= ‘~mAmIm(yp)e-im+ (3)
~.—~

where 1~( yp ) is a modified Bessel function of order m and

argument YP where y = [iPoU(O + i~@)ll’2 is the Propa-

gation constant for a time factor exp(iot). Now the mag-

netic fields are obtained from

(4)i~ouHP = – dEZ/pd+

and

ipouH+ = aEz/ap (5)

for p <b. In particular

H+= y ‘~m AJ:(yp)e-’”+ (6)
~=.~

where

Y = Y/(ipo@) = [(u+ i6ti)/ipou]l’2

and 1;( yp ) is the derivative of Z~ with respect to yp.
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Fig. 1. Idealized two-dimensional model of a four-aperture phased-array

applicator for hyperthermia, where we allow for the intervening air gaps
between the horn apertures.

We now match the interior fields of the target with the

surface fields at p = b, so that

(()F@, over apertures
+m +Cc

(7)

Both sides of this equation are now multiplied by ein@ and

the results are integrated over r#rfrom – n to W. Thus, we

find that

+m

(8)

Then, bearing in mind that F(+) is an even function of $,

we see that

2m4JH(yb)

[J.2 “’2-acos[(m –n)r#s]d$
a

+2
J 1“-acos[(nz-n)+]dr$ .

77/2+ a

(9)

Now we may assume that the distribution over each

aperture is the same except for a complex constant. Thus,

if we designate

then

~~_+aaF(@)cosnr#rd+ =ffiPcosn: (11)
2

and

2/” F(#) cosnr$dr#r = f~Qcosnn (12)
77/2—a

where P and Q are complex factors that can be adjusted in

amplitude and phase to achieve a measure of focusing [3].

Also, we note that the integrations over the cosine func-

tions in (9) are elementary. Thus, we deduce that

[ 12m4J. (yb) =2 l+2Pcosn~+Qcosmr ~.

sin[(%)(i-2a)lc0s[fi31
(13)

Presumably (13) can be employed to get the desired

coefficients A ~. A possible procedure is to truncate the

series over m and then solve the resulting series of linear

equations. In some cases, a simple perturbation procedure

should suffice; we merely neglect the series over m and

solve for A ~. This value is then inserted into the summand

in (9) to yield a first-order corrected value for A ~. The

process can be repeated as desired. The convergence should

be best for small angular gaps (7r/2 – 2a) between the

apertures and/or if ZO is sufficiently small.

The value of ZO to employ in the calculation is not

obvious. But one possible approach is to regard the gap

regions between the apertures as wedge-shaped sectors that

are bounded by radial planes (e.g., @= a and @= r/2 – a).

A suitable solution for the axial electrical field, within the

first sector (i.e., for a < r#I< 7r/2 – a), is of the form

fiz=Ea,@~)(kp)sin [v,($ -a)] (14)

9

which is the radially outgoing solution of the Helmholtz

equation (V 2 + k2)Ez = O, where k2 = COpOu2 = iJ2/C2 and
H[2~ is the Hankel function of the second kind of argument

kp and order v~. On requiring that E= vanish at r#r= a and

7r/2 – a, we deduce that

‘q= (7i-/;~-2a ‘
where q=l,2,3, ----

The coefficients aq are not known at this stage. The

corresponding form of the azimuthal component of the

magnetic field is given by

1 dEz
Hq=— —

if40ti 13p

—— - ~ ~aqH$’(kp)sin [vq(r#s - a)] (1s)

where qO = (pO/CO) 112= 120 T and the prime indicates dif-

ferentiation with respect to kp. The fields in the second

sector (i.e., for 7r/2 + a < + < m – a) are identical in form
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to (14) and (15) if o – a is replaced by o – (77/2+ a) and

the” coefficients aq are replaced by” a” new “set, say b~

( # a,).

Now it is possible to employ the general form given by

(14) and (15) to generate a sequence of boundary-matching

equations at the cylindrical interface p = b. We will argue

that only the leading terms (i.e., for q =1) need be re-

tained. This provides for a sinusoidal variation of the fields

across the gap between the apertures. Thus, in the region
a < @< 71/2 – a, we obtain

where VI = 7r/(77/2 – 2a).

In the (unlikely) limiting case where kb >> VI, ,we see that

Z. -+ qo. However, if kb << VI, we find that

kb

()

ipOub T
Z.= iqo; = ipoub/vl= — y–2cY . (17)

‘r

While it appears that IZOI will be small compared with q.

(or 1207rO), the key dimensionless parameter in (13) is the

product

ZOY=+(;-2.)(*)1’2
()=yb :–2a /r. (18)

Thus, we can say that the condition for the justified neglect

of radiation “leakage” from the system is that

where 8 = l/Re. y is the skin depth of the conductive

material and @= ( 7r/2) – 2a is the wedge angle between

the horn apertures.

In the discussion above, we have not specified or as-

sumed the form of the aperture illumination at each of the

horns. A reasonable ‘supposition [4] is to choose F(o)=

E. cos((7r/2a)@) for – a < @< a. Then it is a simple matter

to deduce from (10) that

~ = (7r/a)cosntx

n [7r/(2cl)]’_n2 if~~+n/2

=(x if na= 77/2. (19)

II. CONCLUSION

In summary, we can state that the criterion for neglect-

ing the leakage radiation should be valid for typical appli-

cators. Although the assumptions are reasonable, further

analyses and confirming experimental data would be use-

ful.
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